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We model a nanoMOSFET by a mesoscopic, time-dependent, coupled quantum-classical
system based on a sub-band decomposition and a simple scattering operator. We first com-
pute the sub-band decomposition and electrostatic force field described by a Schrödinger–
Poisson coupled system solved by a Newton–Raphson iteration using the eigenvalue/eigen-
function decomposition. The transport in the classical direction for each sub-band modeled
by semiclassical Boltzmann-type equations is solved by conservative semi-lagrangian
characteristic-based methods. Numerical results are shown for both the thermodynamical
equilibrium and time-dependent simulations in typical nowadays nanoMOSFETs.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the typical structure of a nanoscaled double gate metal oxide semiconductor field effect transistor (DG-MOSFET) the
electrons are confined along one dimension, called confinement direction or transversal direction, by two layers of silicon
oxide. As the built-in potential at the Si–SiO2 heterojunctions produces a well whose length is comparable to the Debye
length, quantum effects play a relevant rôle, and thus, the energy levels, called sub-bands in the physical literature, become
discrete and the probability density function (pdf) is decomposed into independent populations, one for each sub-band taken
into account. Along the longitudinal direction, called transport direction, the electrons inside each sub-band flow from the
source to the drain thanks to the applied bias and are assumed to be transported classically under Newton laws and interact
quantum-mechanically with the crystal lattice. By assuming that the pdf is invariant along the remaining direction, we ob-
tain a 2D model.
. All rights reserved.
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One approach for the modelling of such a device, sketched in Fig. 1, is the use of a different description of the electrons
following the dimension [6–8,35]: they behave as waves along the confinement direction (z-direction) and as particles along
the transport direction (x-direction). This kind of coupling goes by the name of dimensional coupling, to differentiate it by the
geometrical coupling, where different zones of the device are described by different models put together by interface condi-
tions [4,5,21].

The dimensional coupling is justified because the behavior of the electrons along the confinement direction is quasi-static
with respect to the transport direction, i.e., the time they need to achieve the equilibrium as waves is much smaller than the
time they need to be transported inside the crystal. Therefore, their state as quantum objects is described by the stationary-
state Schrödinger equation
H½V �vp½V � ¼ �p½V �vp½V �; ð1Þ
where H½V � is the one-dimensional Hamiltonian along the confinement
H½V � ¼ Hz½V � ¼ �
�h2

2
d
dz

1
m�

d
dz

� �
� qðV þ VcÞ;
and Vðx; zÞ is the self-consistent potential with z 2 ½0; Lz�. Here, VcðzÞ represents the built-in potential drop, or confining po-
tential, at the Si/SiO2-heterojunctions producing the quantum well trapping the electrons; in our computations
VcðzÞ ¼ 3:15 eV in the Si oxide layers and VcðzÞ ¼ 0 eV in the rest.

The eigenvalues f�p½V �gp form a real, strictly increasing and tending to infinity set because this is a 1D Sturm–Liouville
problem in a compact set ½0; Lz�. This decomposition is what we have already introduced as sub-band decomposition. Should
z not be confined, the spectrum might have continuous components and the sub-bands might not be separated.

The solution of (1) for each slice of the device gives the eigenvalues as a function of the unconfined direction
x 2 ½0; Lx� : f�p ¼ �p½V �ðxÞgp, while the eigenvectors fvp ¼ vp½V �ðx; zÞgp form an orthonormal basis for L2ð0; LzÞ. We next take
into account the electrostatic interaction through the Poisson equation
�divðeRrVÞ ¼ � q
e0
ðN½V � � NDÞ; ð2Þ
where N½V � is the total electron density and ND is the doping profile which takes into account the injected impurities in the
semiconductor lattice. We now describe the transport in the classical direction by a set of Boltzmann transport equations
(BTEs):
@fp

@t
þ 1

�h
r�kin

p � rxfp �
1
�h
r�p � rkfp ¼ Qp½f �; ð3Þ
where fpðt; x; kÞ measures the probability density of finding an electron of the pth-subband at time t in position x with wave
vector k. Here, the first part of the operator takes into account the classical transport of the electrons in each sub-band due to
Newton’s laws and the right-hand side, called the scattering operator, describes the interaction of the electrons with the
crystal lattice and their possible sub-band jump. The band structure of the semiconductor crystal, also called the electron
kinetic energy, is given in the one-valley case and under the parabolic approximation by
�kin
p ðkÞ ¼

�h2jkj2

2m�
:

We remark that Eqs. (1) and (2) are coupled because we need the potential V to compute the spectral elements f�p;vpgp, and
conversely the spectral elements are needed to compute the density N½V � and subsequently the potential V. The total volume
density N½V � is a mixed quantum-classical state, apart from the sub-bands, it also couples the dimensions,
Nðt; x; zÞ ¼
X1
p¼1

qpðt; xÞjvp½V �ðt; x; zÞj
2: ð4Þ
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Fig. 1. The typical geometry of a DG-MOSFET: silicon oxide layers confine the carriers along the transversal direction.



N. Ben Abdallah et al. / Journal of Computational Physics 228 (2009) 6553–6571 6555
Remark that the homogeneity of N is m�3: the classical m�2-contribution from the surface densities
qpðt; xÞ ¼
Z

R2
fpðt; x; kÞdk;
and the quantum m�1-contribution from the eigenfunctions jvp½V �ðt; x; zÞj
2. Finally, we consider a simple relaxation time

operator inside each sub-band given by
Qp½f �ðx; kÞ ¼
1
s ðqpðxÞMðkÞ � fpðx; kÞÞ;
with
MðkÞ ¼ �h2

2pm�kBTL
exp � �h2jkj2

2m�kBTL

 !
;

and the relaxation time s calculated by means of a given mobility l : s ¼ lm�
q . Here, the effective mass m� is set 0.5 me, an

average value between the longitudinal and the transversal Si effective masses. The rest of parameters which appear in
the Boltzmann–Schrödinger–Poisson system Eqs. (1)–(4) are physical constants detailed in Table B.1.

These sub-band decomposition models are widely used in the electronic engineering community, see for instance
[1,2,17,36], where the transport phase is solved by MonteCarlo-type methods. From the mathematical point of view, the con-
nection of a full 2D Schrödinger–Poisson description of the electron transport to this sub-band decomposition in the confin-
ing direction was shown in [10] under a suitable rescaling limit involving the lengths Lx and Lz without taking into account
the electron scatterings. As usual, this kinetic description is computationally expensive due to its high dimensionality. There-
fore, in the literature one can find several approximated descriptions based on drift-diffusion, energy-transport or moment
like models [6–8,18,35] obtained from diffusion-type scalings [9,26,29,30].

The main objective of this work is to develop an accurate fully deterministic method to solve the coupled Boltzmann–
Schrödinger–Poisson system Eqs. (1)–(4). The numerical solver consists of a Schrödinger–Poisson (SP) block to compute the
sub-band energies and the potential and a transport/collision phase to compute the electron densities of each sub-band. For
the SP block we have used a Newton–Raphson algorithm which was first proposed by Nier for the one-dimensional Schröding-
er–Poisson system [31] (see also [16,32,34] ). This Newton–Raphson algorithm performs faster than Gummel iteration
schemes in our out-of-equilibrium situation, see Section 4. The transport/collision phase is solved either by mass-preserving
semi-lagrangian schemes [15,22] or by highly-accurate finite-difference schemes [12,13] using WENO interpolation for recon-
structing flux or pointwise values. The semi-lagrangian scheme allows for larger time-stepping than the finite-difference
method since there is no CFL condition while the finite-differences method is more accurate in time than the semi-lagrangian
method. Other methods can be used for the transport/collision part as the multi-group methods proposed in [23,24].

The resulting scheme is a fully deterministic out-of-equilibrium time-dependent solver of the Boltzmann–Schrödinger–
Poisson system Eqs. (1)–(4). The advantages of fully deterministic schemes compared to Monte-Carlo solvers available can be
summarized analogously to the case of semiclassical Boltzmann–Poisson solvers [12–14,23–25] as:

� They allow for noise-free computation of the evolution on time of the distribution function at every point of the device and
consequently all the macroscopic quantities, i.e., moments of the distribution function, and their stabilization trend
towards the steady state.

� They actually represent benchmarks for hydrodynamic or drift-diffusion solvers that can fairly be tested against it.
� Almost-empty areas of the device are well-described. These areas are usually hard to compute for Monte Carlo solvers to

obtain relevant information on density, mean velocity and energy.

The main drawback of this method with respect to MonteCarlo techniques is its computational cost which can be eased
by parallelization techniques [28].

In this work, we have concentrated our efforts in setting up numerical techniques for dealing with a fast and accurate
computation of the Schrödinger–Poisson and the transport phases. The collision operator has been kept as a simple relaxa-
tion, with constant in space relaxation time due to the constant in space mobility, and the electron band structure has been
reduced to a single valley in the parabolic approximation for simplicity. We are currently incorporating realistic scattering
operators and a more realistic band structure for Si devices to be reported in forthcoming works.

The paper is structured as follows: in Section 2 we present the initial and boundary conditions considered for this typical
nanoMOSFET devices described by the system Eqs. (1)–(4). Section 3 is devoted to detail all parts of the numerical scheme.
Finally, Section 4 validates the numerical scheme by computing equilibrium situations first and then computing stationary
results of the electron transport along a device together with IV-curves.

We finally describe in Section 5 the stabilization towards equilibrium in time of the numerical results. We show that the
results stabilize towards stationary values after plasma oscillations are damped. This oscillatory behavior is due to the highly
doped contact regions and the charge neutrality condition imposed there. The damping rate of these oscillations becomes
smaller for large applied bias, shorter channels or larger relaxation time; and thus stabilization time takes longer. These
oscillations are explained physically due to the Landau damping phenomena predominant close to equilibrium where relax-
ation becomes less relevant.
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2. Initial and boundary conditions: thermodynamical equilibrium

We detail in this section the computation of the initial condition for the scheme. A good initial seed will certainly lead to a
faster and more stable stabilization towards the stationary state. Moreover, this initial guess should be the stationary solu-
tion in case no bias from source to drain is applied to the device, i.e., the thermodynamical equilibrium, which should be kept
stationary by our scheme. Thus, for each p-subband, the thermodynamical equilibrium is given by
f eq
p ðx; kÞ ¼ MðkÞqeq

p ðxÞ;
where the surface density qeq
p is calculated by means of the Fermi levels �eq

F and the equilibrium potential energy �eq
p :
qeq
p ðxÞ ¼

m� kB TL

�h2 exp
�eq

F ðxÞ � �
eq
p ðxÞ

kB TL

� �
: ð5Þ
Taking into account the constraint of charge neutrality
Z Lz

0
Neqðx; zÞdz ¼

Z Lz

0
NDðx; zÞdz
at contacts x ¼ 0 and x ¼ L, the following expression of the Fermi levels is obtained:
�eq
F ðxÞ ¼ kB TL log

�h2

m� kB TL

R Lz

0 NDðx; zÞdzP1
q¼1e�

�eq
q ðxÞ

kB TL

0BB@
1CCA: ð6Þ
To compute the potential energy �eq
p ðxÞ (energy levels) we still need to calculate the set of solutions of the Schrödinger–Pois-

son system (1), (2) at thermal equilibrium Veqðx; zÞ; �p½Veq�ðxÞ; vp½V
eq�ðx; zÞ

� �
.

To solve the Schrödinger–Poisson block Eqs. (1), (2), (4), we need to compute the thermodynamical equilibrium to write
appropriate boundary conditions. With this purpose, we need to deal with three different Schrödinger–Poisson problems,
each corresponding to a different expression of the density N½V �.

Problem 1: Boundary potential. This is a 1D problem at contacts; for symmetry reasons, we just need to solve it at one
contact, thus we choose the source x ¼ 0. We want to obtain the profile for the potential to be used as Dirichlet condition at
the contacts in the 2D problems. We call VbpðzÞ the solution of this problem. As boundaries, we impose homogeneous Neu-
mann conditions at z ¼ 0 and z ¼ Lz; moreover, as the potential is defined up to a constant, we can impose Vbpð0Þ ¼ 0 (sym-
metrically VbpðLzÞ ¼ 0). Using the expressions Eqs. (4)–(6) the density, in this 1D case, is
N½Vbp�ð0; zÞ ¼
R Lz

0 NDð0; fÞdf

Z½Vbp�ð0Þ
X1
p¼1

e�
�p ½Vbp �ð0Þ

kBTL jvp½Vbp�ð0; zÞj2; ð7Þ
where the repartition function has the general expression:
Z½V �ðxÞ ¼
X1
q¼1

e�
�q ½V �ðxÞ

kBTL :
Problem 2: Thermodynamical equilibrium. Once we have computed the boundary potential, we can compute a thermo-
dynamical equilibrium for the system when no bias from source to drain is applied. Nevertheless, we apply the gate poten-
tial. As in the previous problem, using the expressions Eqs. (4)–(6), the density has form
N½Veq� ¼
R Lz

0 NDð0; fÞdf

Z½Vbp�ð0Þ
X1
p¼1

e�
�p ½Veq �ðxÞ

kBTL jvp½Veq�ðx; zÞj2; ð8Þ
where the fact that Fermi levels are constant in the device is used, because the same configuration at the source and drain is
considered and no bias is applied. We remark that the neutrality condition of Problem 2 is preserved because
VbpðzÞ ¼ Veqð�x; zÞ where �x 2 f0; Lxg.

Problem 3: Time evolving potential. Once the thermodynamical equilibrium and the boundary potential are found we
can write appropriate boundary conditions to solve the Schrödinger–Poisson–Boltzmann system Eqs. (1)–(3). In this way,
while making the code progress in time, we need to update the potential during all the transition states: given the sub-band
occupation factors fqpgp, the density is given by (4) and thus we need to solve the corresponding SP block.

Now, let us finally specify the boundary conditions for the Schrödinger–Poisson–Boltzmann system Eqs. (1)–(4), see Fig. 4.
For problem Eq. (7) we impose homogeneous Neumann boundary conditions for z ¼ 0 and z ¼ Lz, i.e., dVbp

dz ð0Þ ¼
dVbp

dz ðLzÞ ¼ 0.
For problem (8) the values at contacts are given by Vbp as well as the values at gates are fixed by constant VGS; elsewhere
homogeneous Neumann conditions are taken, i.e., Veqðx 2 f0; Lxg; zÞ ¼ VbðzÞ;Veqðx; z 2 f0; LzgÞ ¼ VGS at gates, and
dVeq

dz ðx; z 2 f0; LzgÞ ¼ 0 outside gates. For the SP block in each time iteration, boundary conditions are given by Dirichlet con-
ditions at contacts and gates and Neumann conditions elsewhere: Vð0; zÞ ¼ VeqðzÞ;VðLx; zÞ ¼ VeqðzÞ þ VDS;Vðx; z 2 f0; LzgÞ ¼
VGS at gates, and dV

dz ðx; z 2 f0; LzgÞ ¼ 0 outside gates.
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For the BTE, conditions to force the electrical neutrality for the entering particles are assumed at contacts x ¼ 0 or x ¼ Lx,
see the discussion on [13, Section 2.1]. As usual, the outgoing particles are treated with homogeneous Neumann conditions.
For the wave vector k there is no real border, since for large energies jkj there should be no particle, i.e., for every t and x the
distribution f ðt; x; kÞ � 0 if jkj is large. Therefore, homogeneous Neumann conditions are considered at these artificial bound-
aries as in [13].

3. Numerical schemes

As usual, in order to deal with magnitudes of order zero, we first reduce the complete system to dimensionless coordi-
nates. We assume invariance along the y-dimension, therefore the device spans over the ðx; zÞ-plane. In Table 1 we show the
dimensionless variables taken into account, magnitudes with tilde are meant with dimensions, otherwise they are scaled.

The BTE, after the dimensionless process, reduces to
Table 1
Dimens

Adim.

~x ¼ l�x;
~k ¼ k�k

~t ¼ t�teV ¼ V�

~� ¼ ���

~q ¼ q�q

j~vj2 ¼ veN ¼ N�
@fp

@t
þ 2CV k1

fp

@x
� CV @�

pot
p

@x
@fp

@k1
¼ 1

s
qp M � fp

� �
; ð9Þ
where s is now the dimensionless relaxation time s ¼ ~s=t�, and the dimensionless Maxwellian reads MðkÞ ¼ 1
p e�jkj

2
. The

Schrödinger–Poisson system, after adimensionalization, reads
� CS;1 d
dz

1
m�

dvp

dz

� �
� CS;2½V þ Vc�vp ¼ �pot

p vp; ð10Þ

� div½eRrV � ¼ �CP ½N � ND�: ð11Þ
Numerical values for all the parameters as well as a summary of all the dimensionless constants are given in Tables B.1 and B.2.
Therefore, in the following we focus on showing the details of the numerical solver for the system (9)–(11). Two main

blocks are concerned for the solution of the complete model:

� the BTE-block (Boltzmann transport equation) by splitting techniques or finite-differences schemes, see Section 3.2.
� the SP-block (Schrödinger–Poisson) by Newton–Raphson iterations, see Section 3.1.

The computational domain is discretized into a tensor product mesh, and a uniform mesh is taken in each direction:
xi ¼ iDx i ¼ �Nghp; . . . ;Nx þ Nghp � 1
ðk1Þl ¼ �kmax þ lDk1 l ¼ �Nghp; . . . ;Nk1

þ Nghp � 1
ðk2Þm ¼ �kmax þmDk2 m ¼ 0; . . . ;Nk2

� 1;
where Dx;Dk1 and Dk2 are the uniform steps for x; k1 and k2 variables, respectively, kmax is the maximum values for k-vari-
ables, which is fixed with the condition �kinðkmax; 0Þ ¼ a�N, where a ¼ 2:436946 is an adimensionalized reference energy and
�N is an integer empirically adapted to the problem to cover the support of f along its evolution. Due to the type of schemes
considered for BTE, additional points (Nghp ghost points) for the x and k1 meshes have to be taken into account at the border.

3.1. Newton–Raphson scheme for the SP block

We face now to solve efficiently the Schrödinger–Poisson problem written with physical dimensions
S½V �ðvp½V �Þ :¼ � �h2

2
d
dz

1
m�

dvp½V �
dz

� �
� qðV þ VcÞvp½V � ¼ �pot

p ½V �vp½V �; ð12Þ

� divðeRrVÞ ¼ � q
e0
ðN½V � � NDÞ; ð13Þ

Nis a function of V through given data; f�pot
p ½V �gp; fvp½V �gp

� �
: ð14Þ
ionless parameters.

Parameter with dimensions Value

~z ¼ l�z l� ¼ Lx 20� 10�9 m

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�kB TL

p
�h

5:824664� 108 m�1

t* = ‘‘typical time” 10�14 s
V V* = ‘‘typical Vbias” 1 V

�� ¼ �h2 k�2

2m�
¼ kBTL

4:141951� 10�21 J

q� ¼ k�2 3:392672� 1017 m�2

�jvj2 v� ¼ 1
l� 2:000000� 107 m�1

N N� ¼ q�v� 6:785343� 1024 m�3
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A natural way to proceed seems the use of iterative methods by which we recursively update the potential V until we con-

verge to the solution: starting from an initial guess Vold, and therefore �pot
p ½Vold�;vp½V

old�;N½Vold�
n� �

, we can exploit Eqs. 12, 13

to update the potential to a new value Vnew. The overall scheme is summarized in Fig. 2.

Remark 1. Even if the code is implemented dimensionless, in order to derive the correct equations, it is much easier to
develop all the calculations with physical units and perform adimensionalization once the scheme has been completely
written.

We describe now how each step of the iteration is performed:
Step 1 – Newton–Raphson (coupled system). Rewriting Eq. (13) as
�divðeRrVÞ þ q
e0
ðN½V � � NDÞ ¼ 0;
then we can restate the problem as looking for the zero point V of the operator P½V � defined by
P½V � ¼ �divðeRrVÞ þ q
e0
ðN½V � � NDÞ: ð15Þ
Since the x variable is just a parameter in all these problems, we omit the x-dependencies in all this step. Therefore, the
potentials here are just written as functions of the variable z.

The classical way to approach the zero point of a function is the use of Newton–Raphson method: suppose we have a
guess Vold, then the next guess Vnew is expressed in terms of the previous one by
P½Vold� þ dPðVold;Vnew � VoldÞ ¼ 0:
old old(N     , V      )         V new

update potential

diagonalize Schroedinger operator

V            Nnew

update density

is convergence
constraint fulfilled?

N      =N
V      =V

new

new
old
old

set

introduce initial guess for the
potential Vold

diagonalize Schroedinger operator

compute the initial guess for the
density Nold

initialization

DSTEQR

use given
expression

yes

no

use given
expression

Newton−Raphson: takes into account Schroedinger eq.
(computation of Gateaux derivatives, matrix full)

Gummel: decoupled system (matrix is sparse)

"Poisson" solver: DGESV

step 0(i)

step 0(ii)

step 0(iii)

step 1

DSTEQR
step 2

step 3

step 4

step 5

new

Fig. 2. The iterative solver for the Schrödinger–Poisson block.
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As we are not dealing with real-valued functions, dPðV ;UÞ denotes the Gâteaux-derivative or directional derivative of P, at
point V in direction U:
dPðV ;UÞ ¼ lim
t!0

P½V þ tU� � P½V �
t

¼ � div½eRrU� þ q
e0

dNðV ;UÞ:
In order to differentiate the density N½V �, we obtain the Gâteaux-derivatives of the eigenproperties f�pot
p ½V �;vp½V �gp of the

eigenproblem Eq. (12).
We exploit the calculations in Appendix A by replacing the classical derivative dð�Þ

dt with the Gâteaux-derivative dð�ÞðV ;UÞ
and the vector scalar product h~v; ~v 0i ¼

PN
i¼1v iv 0i with that of L2ð0; LzÞ; hf ; gi ¼

R Lz

0 f ðzÞ�gðzÞdz giving:
d�pot
p ðV ;UÞ ¼ hdSðV ;UÞvp½V �;vp½V �i;

dvpðV ;UÞ ¼
X1
p0¼1

hdSðV ;UÞvp½V �;vp0 ½V �i
�pot

p ½V � � �pot
p0 ½V �

vp0 ½V �:
This is a crucial point, because it is here that Eqs. (12) and (13) are fully coupled. In our case the Gâteaux-derivative of the
functional in (12) is easily computed, dSðV ;UÞ ¼ �qU; and if we explicit the L2-scalar product h�; �i, we can rewrite the
derivatives
d�pot
p ðV ;UÞ ¼ �q

Z Lz

0
UðfÞjvp½V �ðfÞj

2 df;

dvpðV ;UÞ ¼ �q
X1
p0¼1

R Lz

0 UðfÞvp½V �ðfÞvp0 ½V �ðfÞdf

�pot
p ½V � � �pot

p0 ½V �
vp0 ½V �:
Let us remark that since the Schrödinger operator is symmetric, the eigenvectors and the eigenfunctions are real.
We can now express the Newton–Raphson scheme in terms of the Gâteaux-derivative of the Poisson functional (15) as:
�div½eRrVnew� þ q
e0

dNðVold;Vnew � VoldÞ ¼ � q
e0
ðN½Vold� � NDÞ: ð16Þ
The explicit calculation of the Gâteaux derivative of the density has the form
dNðV ;UÞ ¼
Z Lz

0
A½V �ðz; fÞUðfÞdf:
Then, the scheme (16) gives rise to a Poisson-like equation in which some extra non-local terms appear. Now, writing the
final result in dimensionless units, we get
�div½eRrVnew� þ CN
Z

A½Vold�ðz; fÞVnewðfÞdf ¼ �CPðN½Vold� � NDÞ þ CN
Z

A½Vold�ðz; fÞVoldðfÞdf:
For completion, we give the expression of A½V � ¼A0½V � þA1½V �, in adimensionalized units, for the three problems (7), (8)
and (4):
ð7Þ :

A0½Vbp�ðz; fÞ ¼
R Lz=l�

0
NDð0;zÞdzP

r
e
��r ½Vbp �

P
p

P
q – p

e
��q ½Vbp ��e

��p ½Vbp �

�p ½Vbp ���q ½Vbp �
� vp½Vbp�ðzÞvq½Vbp�ðzÞvp½Vbp�ðfÞvq½Vbp�ðfÞ

A1½Vbp�ðz; fÞ ¼
R Lz=l�

0
NDð0;zÞdzP

r
e
��r ½Vbp �

	 
2 �
P
p;q

e��p ½Vbp �e��q ½Vbp �jvp½Vbp�ðzÞj2jvp½Vbp�ðfÞj2
"

�
P
p;q

e��p ½Vbp �e��q ½Vbp �jvp½Vbp�ðzÞj2jvq½Vbp�ðfÞj2
#

8>>>>>>>>>><>>>>>>>>>>:
ð8Þ :

A0½Veq� ¼
R Lz=l�

0
NDð0;zÞdzP

r
e
��r ½Vbp �

P
p

P
q – p

e��q ½Veq ��e��p ½Veq �

�p ½Veq ���q ½Veq � � vp½Veq�ðzÞvq½Veq�ðzÞvp½Veq�ðfÞvq½Veq�ðfÞ

A1½Veq� ¼
R Lz=l�

0
NDð0;zÞdzP

r
e
��r ½Vbp �

P
p

e��p ½Veq �jvp½Veq�ðzÞj2jvp½Veq�ðfÞj2

8>>>><>>>>:
ð4Þ : A½V � ¼

P
p

P
q – p

qq�qp

�p ½V ���q ½V �vp½V �ðzÞvq½V �ðzÞvp½V �ðfÞvq½V �ðfÞ:
�

The divergence and gradient operators are approximated by alternate finite differences, in order to recover the classical
centered scheme for the Laplacian, the integrals are computed through trapezoids or right-rectangles approximation and the
linear system, which is full, is finally solved through a LAPACK routine called DGESV.
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Step 1 – Gummel (decoupled system). As a completion we recall how the Gummel method works: the potential is up-
dated by (in dimensional units)
�divðeRrVnewÞ þ q
e0

N½Vold� q
kBTL

ðVnew � VoldÞ ¼ � q
e0
ðN½Vold� � NDÞ;
which becomes after adimensionalization
�divðeRrVnewÞ þ CNN½Vold�Vnew ¼ �CG;2 N½Vold�ð1� CG;3VoldÞ � ND

� �
:

As well as before, the divergence and gradient operators are approximated by alternate finite differences, in order to recover
the classical centered scheme for the Laplacian, the integrals are computed through trapezoids or right-rectangles approx-
imation, but unlike Newton–Raphson scheme the system is sparse.

Remark 2. The difference with respect to the Newton–Raphson method is that this ‘‘Poisson” equation does not take into
account the Schrödinger equation, which is why this system is called ‘‘decoupled” and the linear system is sparse: it does not
feel any non-local effect.

Step 2 and Step 0(ii). Eq. (12) reads as the eigenvalue problem S½V �ðvp½V �Þ ¼ �
pot
p ½V �vp½V �, where S½V � is the dimensionless

Schrödinger functional
S½V �ð�Þ ¼ �1
2

CS;1 d
dz

1
m�

dð�Þ
dz

� �
� CS;2 � ð�Þ:
We approximate the z-derivatives in alternate directions, in order to recover the classical centered three-point scheme for
the Laplacian, then diagonalize the symmetric matrix by means of a LAPACK routine called DSTEQR.

Step 3 and Step 0(iii). Inject the given data and the eigenproperties into (14) to update the value of the density.
Step 4 – Stopping criteria. In the code, we have used as constraint to check convergence the L1 and L2-differences be-

tween the old and new potentials and densities with a tolerance fixed to 10�6 in dimensionless units.

3.2. Solvers for the BTE

The Boltzmann equations for each sub-band have been solved using two different schemes. The first one is based on a
long tested strategy for semiclassical Boltzmann–Poisson systems using high-order WENO finite-difference schemes to-
gether with explicit third-order Runge–Kutta time discretizations, see [11–13] where the interested reader can find all
the details.

The second possibility is a splitting scheme at two levels already used in [14] in the semiclassical setting:

� Time Splitting (TS) in the Boltzmann transport equation, in order to separate transports from collisions, i.e., we split (9)
into
@fp

@t
þ 2CV k1

@fp

@x
� CV @�pot

@x
@fp

@k1
¼ 0 ð17Þ

and @fp
@t ¼ Qp½f �.

� Dimensional splitting (DS), in order to split the ðx; k1Þ-phase space when solving transports, i.e., we split (17) into
@fp

@t
þ 2CV k1

@fp

@x
¼ 0 and

@fp

@t
� CV @�pot

@x
@fp

@k1
¼ 0:
In this way, we reduce the schemes to solve numerically 1D linear advection equations and the collision equation is just a
simple ODE to solve explicitly. We are in fact performing two splittings, one inside the other; the overall splitting scheme
results in a seven-step scheme, as it is sketched in Fig. 3. The solver of the Boltzmann transport equation has to be coupled
with the solver for the Schrödinger–Poisson block for updating all the band potential energies, which is why the scheme
requires in fact eleven steps: the seven steps of the splitting plus four steps for updating the eigenproperties after each x-
transport step. Remark that the other steps do not modify the surface densities qp.

This kind of schemes has a long history in kinetic equations mainly used for Vlasov-like problems in plasma physics with
the generic name of semi-lagrangian schemes, see [22] and the references therein. In order to keep locally a mass conserva-
tive method, semi-lagrangian methods were improved introducing the flux balance method (FBM) [22]. This method is based
on following integral values along the characteristics backwards in time. More details about the FBM method can be found in
[15,22]. Finally since the end points of backwards characteristics are not usually mesh-points a final interpolation at the level
of the primitive function is needed to reconstruct the fluxes. Here, we use the fifth order Pointwise WENO-6,4 interpolation
introduced in [15] where all details can be found by the interested reader.

Let us point out that all the numerical results shown in this paper give almost no difference in terms of equilibrium re-
sults and qualitative properties with either scheme for the transport/collision step. The advantage of the finite-difference
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Fig. 3. A sketch of the splitting scheme: seven steps are due to the two successive splittings, and other four steps are needed after x-advection to update the
band potential energies.
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method being its high accuracy and the one of the splitting method its larger time stepping. We refer to [14] for a detailed
discussion in the comparison of both methods.

3.3. Boundary conditions

The boundary conditions for the transport/collision equation and for the computation of the force field are resumed in
Fig. 4.

As discussed in Section 2, we impose on the Boltzmann equation boundary conditions in order to force charge neutrality
against thermal equilibrium at contacts as in [13]. They lead to
f n
p;�i;l;m ¼

f n
p;0;l;m k1 < 0

qeq
p ð0Þ

qn
pð0Þ

f n
p;0;l;m k1 P 0

8<: for i ¼ 1; . . . ;Nghp
and
f n
p;Nx�1þi;l;m ¼

f n
p;Nx�1;l;m k1 > 0

qeq
p ðLÞ

qn
pðLÞ

f n
p;Nx�1;l;m k1 6 0

8<: for i ¼ 1; . . . ;Nghp
Outgoing particles at contacts are treated with homogeneous Neumann conditions as well as for the artificial boundaries at
k1 ¼ 	kmax, i.e.:
f n
p;i;�l;m ¼ f n

p;i;0;m

f n
i;Nk1

�1þl;m ¼ f n
i;Nk1

�1;m

(
for l ¼ 1; 